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Convection in directionally solidifying alloys
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In an experiment on binary alloys directionally solidifying from below, Sample &
Hellawell (1984) showed that the plume convection can be successfully prohibited by
rotating the cooling tank around an inclined axis. In the present paper we interpret
their experimental observation by an analytical approach. Results show that there is a
flow induced by the inclination. The induced flow in the fluid layer is a parallel shear
flow consisting of three parts: the thermal boundary-layer flow, the solute boundary-
layer flow, and the Ekman-layer flow. In the mush, the induced flow is also a parallel
flow but of much smaller velocity, consisting of two flows of opposite directions. The
induced velocity in the fluid layer increases with inclination angle and decreases with
the effective Taylor number Te. The induced velocity in the mush also increases with
inclination angle but remains virtually the same on varying the speed of rotation. The
linear stability analysis of the mushy layer shows that, due mostly to the reduction
of buoyancy, the mush becomes more stable as the inclination angle increases. In the
precession-only case, the most-unstable mode of instability is the longitudinal mode,
which propagates in a direction perpendicular to the induced flow. In the spin (with
or without precession) case, the instability modes propagating in different directions
are of equal stability. Because the induced flow changes direction with a frequency
equal to the spin angular velocity, the flow scans over all the directions of the system
and stabilizes equally the modes in different directions. We conclude on the basis of
the present results and from the practical point of view that spin-only rotation is
more effective than the precession-only rotation in stabilizing the convection during
solidification.

1. Introduction
The directional solidification process has attracted much research effort for several

decades due to its wide application in, for example, the semiconductor industry
regarding single crystal growth and the aerospace industry regarding the manufacture
of turbine blades for high-performance turbine engines. During the solidification
process, a wide range of fluid-mechanical phenomena may occur. In particular, the
convection due to buoyancy occurring adjacent to the freezing front (or the melt/solid
interface) may profoundly influence the internal structure of the resultant castings
(Langlois 1985; Davis 1990; Huppert 1990). For some alloys the melt/solid interface is
morphologically unstable (Mullins & Sekerka 1964), causing the interface to become
highly convoluted and eventually to evolve into a dendritic mushy zone below the
bulk melt and above the solid. As a result, several different kinds of buoyancy-driven
convection occur in both the bulk melt and the dendritic mush. For details the reader
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may refer to the experiments conducted by, for example, Chen & Chen (1991) and
Tait & Jaupart (1992).

In essence, at the onset of the convection in the solidifying system consisting of
a fluid layer above and a mushy layer below, there are two different instability
modes competing (Worster 1992; Chen, Lu & Yang 1994). They are the boundary-
layer mode, a convection confined to the shallow solute boundary layer above the
melt/mush interface, and the mushy-layer mode, a convection circulating in the
whole depth of the mush. For aqueous ammonium chloride solution, Chen et al.
(1994) indicated that in a wide-range of physical parameters the boundary-layer mode
dominates the system, and it will evolve into the nonlinear salt-finger convection as
solidification proceeds. Under the strong perturbation imposed by the vigorous salt-
finger convection above the interface, convection in the mush is eventually triggered
subcritically (Amberg & Homsy 1993; Anderson & Worster 1995; Chung & Chen
2000). Consequently, a large number of plumes containing buoyant, salt-depleted
solution emanate from the interior of the mush. The plumes flow through essentially
vertical channels, forming so-called ‘chimneys’ or the freckles in the casting. The
freckles have a detrimental influence on the mechanical strength of the resultant
castings, which is a major motivation for researchers to discover means to prevent
their formation.

To date, there have been two experiments that have successfully shown a scheme
to prevent the formation of chimneys. In the first experiment, by Sample & Hellawell
(1984), 25, 30 and 35 wt% ammonium chloride solutions were used. They rotated the
cooling tank with respect to an axis of inclination angle φn varying from 0◦ to 30◦.
Two cases of rotation were considered: the spin-only case and the spin-and-precession
case. Both cases led to the same conclusion that, under the inclined rotation with
20◦ 6 φn 6 30◦, the plume convection can be effectively suppressed when the rotation
speed is less than 5 r.p.m. For φn 6 10◦, the plumes were still observed. They did not
investigate φn > 30◦ due to the limitation of the experimental facility. They attributed
the success of the suppression of the plume to the shear flow occurring above the
melt/mush interface, which inhibits the salt-finger convection in the solute boundary
layer and in turn inhibits the occurrence of plumes. They pointed out further that
rotation about a vertical axis could not effectively eliminate the plume, which has
recently been confirmed by the analyses of Neilson & Incropera (1993) and Lu &
Chen (1997).

The second experiment was carried out by Huppert & Hallworth (1993), who added
small quantities of copper sulphate to a solution of 27 wt% ammonium chloride in
water. They found that as the quantity of the contaminant increased, the time taken
for the plumes to appear in the system increased. When the contamination increased
up to 0.5 wt%, no plume was observed at all. They attributed this inhibition of
the plume to the change of the morphology of the dendrites of the mush: as the
contamination increased, the crystals became more faceted so that the solid fraction
of the mush increased, leading to a higher resistance to the flow in the mush. Once the
solid fraction was high enough, a complete suppression of the plumes was achieved.
Later, Worster & Kerr (1994) conducted an theoretical analysis to interpret the
experimental observations of Huppert & Hallworth.

In the present paper, we will focus on the first experiment and employ an analytical
approach to interpret the experimental observations of Sample & Hellawell (1984).
We will first solve analytically the shear flow induced by the inclination of the system,
which consists of a semi-infinite fluid layer above and a mushy layer below. It is found
that the induced flow turns out to be a result of the interaction among gravity, the
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pressure gradient and the Coriolis force. Based on this induced flow, we implement
a linear stability analysis to investigate the stability of the flow in the mush. The
results can explain the experimental observations and shed light on the mechanisms
stabilizing the system under inclined rotation. Note however that, instead of the spin-
only and the spin-and-precession cases considered by Sample & Hellawell, we will
examine the precession-only and the spin-and-precession cases. This is because, as we
shall point out later in the paper, as spin is imposed, its effect will predominate over
the precession. This explains why the two cases considered by Sample & Hellawell
(both including spin) led to similar results.

In the following, the formulation of the system under a general rotating motion
is given in § 2. These equations and associated boundary conditions are solved ana-
lytically for the flow induced by the inclination in § 3, in which several examples of
the induced flow are given and the limits to the existence of solutions are discussed.
The linearized perturbation equations for the linear stability analysis in the mush
are derived in § 4. Then the linear stability analyses for the precession-only case and
the precession-and-spin case are shown in respectively § 5 and § 6. Finally, concluding
remarks regarding the induced flow, the stability in the mush, and the limitation of
the present solution are given in § 7.

2. Formulation and problem description
Consider the system as shown in figure 1, a binary solution of concentration C0

and temperature T∞ being unidirectionally solidified from below, in which a dendritic
mush, extending from z = 0 to z = h(x, y, t), forms between the eutectic solid below
and the semi-infinite bulk fluid above. The height of the mush h is to be determined
as part of the solution. Assume that the solid/mush interface moves in the direction
of thermal gradient with a constant velocity V . The system rotates in a general way
such that the angular velocity can be described as

Φ̇ = (φ̇p sinφn sinφs)ex + (φ̇p sinφn cosφs)ey + (φ̇p cosφn + φ̇s)ez, (2.1)

where φp, φn and φs are the angles of precession, nutation and spin, respectively, and

φ̇p and φ̇s are the angular velocities of precession and spin, respectively; ex, ey and ez
are the unit vectors of a Cartesian coordinate system, which, after taking the Galilean
transformation with respect to the interface velocity V , is fixed on the mush/solid
interface. In figure 1 the coordinate system is denoted by x, y, z with heavy lines.

Two set of equations, one in the fluid layer (or the bulk melt) and one in the mushy
layer, are required to describe the fluid motion of the system (or the cooling tank).
The coordinate system is fixed on the mush/solid interface, translating with V and
rotating with Φ̇, and the governing equations in the fluid layer h < z < ∞ are

∇ · u = 0, (2.2a)[
∂

∂t
− V ∂

∂z
+ u · ∇

]
u = −∇P + ν∇2u+

(
ρ

ρ0

− 1

)
g+ 2u× Φ̇, (2.2b)(

∂

∂t
− V ∂

∂z
+ u · ∇

)
T = κ∇2T , (2.2c)(

∂

∂t
− V ∂

∂z
+ u · ∇

)
C = Df∇2C. (2.2d)
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Figure 1. The system considered. A semi-infinite fluid layer (or the bulk melt) overlies a dendritic
mushy layer. The x, y, z coordinate system is fixed on the mush/solid interface. The inertia frame
is denoted by X, Y , Z , which after several coordinate transformations shown in the figure becomes
the x, y, z system. φn denotes the inclination angle, φp denotes the precession angle, and φs denotes
the spin angle. Gravity points vertically downwards.

In the above equations, u is the velocity vector (u, v, w) with respect to the cooling
tank, P = p/ρ0 − g · r, p is the static pressure, ρ0 the reference density, r the position
vector, T the temperature, C the concentration, κ the thermal diffusivity, Df the solute
diffusivity, ν the kinematic viscosity, and g = −g(sinφn sinφs, sinφn cosφs, cosφn) the
gravitational acceleration vector, depending on both the nutation and spin angles,
and g is the gravitational constant.

In the momentum equation (2.2b), we have neglected the centrifugal accelaration
(ρ/ρ0)Φ̇ × (Φ̇ × r) as well as the tangential acceleration (ρ/ρ0)Φ̈ × r. The relative
importance of these two terms compared to the gravity force is determined by the
ratio |Φ̇|2lc/g, where lc is the characteristic length measured from the rotation axis.
Since the rotation speed considered in the present paper is about 1–10 r.p.m. and lc
is about 20 cm (the dimension of the cooling tank, Sample & Hellawell 1984), the
ratio is less than 0.02. Therefore, both the centrifugal and tangential terms can be
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neglected in the present analysis. Since the Boussinesq approximation is applied, the
density of the fluid is a constant except in the gravity term in which the following
relation holds:

ρ = ρ0(1− α∗(T − TL(C0)) + β∗(C − C0)), (2.3)

where α∗ and β∗ are respectively thermal and solute expansion coefficients, and TL(C0)
is the liquidus temperature corresponding to C0.

In the mushy layer 0 < z < h, the governing equations are

∇ · u = 0, (2.4a)

ν

Π(χ)
u = −∇P +

(
ρ

ρ0

− 1

)
g+

2

χ
u× Φ̇, (2.4b)

(
∂

∂t
− V ∂

∂z
+ u · ∇

)
T = κ∇2T − L

c

(
∂

∂t
− V ∂

∂z

)
χ, (2.4c)

(
∂

∂t
− V ∂

∂z

)[
χC + (1− χ)C∗]+ u · ∇C = ∇ · (χDf∇C). (2.4d)

In (2.4), Π(χ) is the permeability function, χ the porosity, L the latent heat per
unit volume, c the specific heat per unit volume, and C∗ the concentration of
the solid. The specific heat coefficients, the thermal conductivities and the solute
diffusivities of both the liquid and solid phases are assumed to be equal. Moreover,
as discussed for (2.2b), the centrifugal acceleration and tangential acceleration due
to the rotation have also been neglected in the Darcy equation (2.4b). Since the
thermodynamic equilibrium condition holds in the mush (Chen et al. 1994), the
liquidus relation

T − TL(C0) = Γ (C − C0) (2.5)

is applied, where Γ is the slope of the liquidus. As a result, the density can be
represented by

ρ = ρ0(1 + β̄(C − C0)), (2.6)

where β̄ = β∗ − Γα∗. Note that the Coriolis acceleration 2u × Φ̇ in both (2.2b) and
(2.4b) can be expressed as

2u× Φ̇ = 2[(φ̇pCn + φ̇s)v − (φ̇pSnCs)w]ex + 2[−(φ̇pCn + φ̇s)u

+(φ̇pSnSs)w]ey + 2[(φ̇pSnCs)u− (φ̇pSnSs)v]ez. (2.7)

In (2.7), we have used the abbreviations

Sn ≡ sinφn, Cn ≡ cosφn, Ss ≡ sinφs, Cs ≡ cosφs, (2.8a–d )

which will be also used in the subsequent formulations.
The boundary conditions at the infinite far field are that both the temperature

and concentration are assumed to remain the same as the original solution and the
fluid experiences a rigid-body rotation. Also, the height of the tank is assumed large
enough that the influence due to the possible deformation of the free surface can be
neglected. Accordingly, as z →∞ we have

T → T∞, C → C0, u→ 0. (2.9a–c)
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At the melt/mush interface z = h(x, y, t) the boundary conditions are

T − TL(C0) = Γ (C − C0),
∂T

∂n
= Γ

∂C

∂n
, [u · n] = 0, (2.10a–c)

[T ] = 0,

[
∂T

∂n

]
= 0, χ = 1, [σn] = 0, (2.10d–g)

∂u2

∂n

∣∣∣∣
h+

=
Λ√
Π(1)

(u2|h+ − u2|h−), (2.10h)

where [ ] denotes the jump of the enclosed quantity across the interface, n is the
normal vector to the interface, and σn is the normal stress. Equation (2.10a) represents
concentration continuity, (2.10b) is the marginal equilibrium condition proposed by
Worster (1986), (2.10c) and (2.10d) account respectively for mass and temperature
continuity, (2.10e) represents heat flux continuity, (2.10f) means that the porosity is
fixed to unity, (2.10g) denotes normal stress continuity, and (2.10h) is an empirical
condition proposed by Beavers & Joseph (1967), describing the relation between the
planar velocities in the fluid and mushy layers, in which u2 is the planar velocity
vector (u, v) and Λ is an empirical constant determined by experiment. The boundary
conditions at mush/solid interface are that the eutectic concentration (or temperature)
and impermeable boundary are prescribed; namely, at z = 0 we have

T = TE, u · n = 0, (2.11a,b)

where TE is the eutectic temperature of the solid.
We non-dimensionalize the governing equations as well as the boundary conditions

with the following scales: V for velocity, H = κ/V for length, κ/V 2 for time, and
β̄∆Cρ0gκ/V for pressure in which, ∆C = C0−CE and CE is the eutectic concentration.
The dimensionless temperature and concentration are respectively

θ =
T − TL(C0)

∆T
, Θ =

C − C0

∆C
, (2.12a,b)

where ∆T = Γ∆C = TL(C0) − TE . For convenience we adopt the same notation as
in the previous equations for the dimensionless quantities in the following equations.
We consider in the present paper a particular rotation in which both φ̇p and φ̇s are

fixed to be constant and φ̇n = 0, i.e. the nutation motion is absent from the present
system and the nutation angle φn, or the inclination angle, is fixed. As a result, in the
fluid layer, the dimensionless continuity equation, momentum equation, heat balance
and solute balance equations are respectively

∇ · u = 0, (2.13a)

1

σ

[
∂

∂t
− ∂

∂z
+ u · ∇

]
u = ∇2u−HRm

∂p

∂x
+ (Rtθ − RcΘ)SnSs

+[(−1)npT 1/2
ap Cn + (−1)nsT 1/2

as ]v − [(−1)npT 1/2
ap SnCs]w,

(2.13b)

1

σ

[
∂

∂t
− ∂

∂z
+ u · ∇

]
v = ∇2v −HRm

∂p

∂y
+ (Rtθ − RcΘ)SnCs

−[(−1)npT 1/2
ap Cn + (−1)nsT 1/2

as ]u+ [(−1)npT 1/2
ap SnSs]w,

(2.13c)
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1

σ

[
∂

∂t
− ∂

∂z
+ u · ∇

]
w = ∇2w −HRm

∂p

∂z
+ (Rtθ − RcΘ)Cn

+[(−1)npT 1/2
ap SnCs]u− [(−1)npT 1/2

ap SnSs]v, (2.13d)

(
∂

∂t
− ∂

∂z
+ u · ∇

)
θ = ∇2θ, (2.13e)

(
∂

∂t
− ∂

∂z
+ u · ∇

)
Θ = ε∇2Θ. (2.13f)

In the mushy layer, the continuity equation, Darcy equation, heat and solute balance
equations are respectively

∇ · u = 0, (2.14a)

u

Π(χ)
= −Rm ∂p

∂x
− RmSnSsθ + [(−1)npT 1/2

mp Cn + (−1)nsT 1/2
ms ]

v

χ
− [(−1)npT 1/2

mp SnCs]
w

χ
,

(2.14b)

v

Π(χ)
= −Rm ∂p

∂y
− RmSnCsθ − [(−1)npT 1/2

mp Cn + (−1)nsT 1/2
ms ]

u

χ
+ [(−1)npT 1/2

mp SnSs]
w

χ
,

(2.14c)

w

Π(χ)
= −Rm ∂p

∂z
− RmCnθ + [(−1)npT 1/2

mp SnCs]
u

χ
− [(−1)npT 1/2

mp SnSs]
v

χ
, (2.14d)(

∂

∂t
− ∂

∂z
+ u · ∇

)
θ = ∇2θ −F

(
∂

∂t
− ∂

∂z

)
χ, (2.14e)

χ

(
∂

∂t
− ∂

∂z

)
θ + u · ∇θ = −(θ −C)

(
∂

∂t
− ∂

∂z

)
χ. (2.14f)

In the above equations, σ ≡ ν/κ is the Prandtl number, H ≡ H2/Π0 is the inverse
Darcy number, Π0 is the reference permeability of the mush, Rt and Rc are respectively
the thermal and solute Rayleigh numbers of the fluid layer, and Rm is the Rayleigh
number of the mushy layer. They are defined as

Rt ≡ gα∗∆TH3

κν
, Rc ≡ gβ∗∆CH3

κν
, Rm ≡ gβ̄∆CΠ0H

κν
. (2.15a–c)

Rt, Rc and Rm satisfy the relations

Rt =AHRm, Rc = (1 +A)HRm, (2.16a,b)

where A ≡ Γα∗/β̄ is the buoyancy ratio. In addition, ε ≡ Df/κ is the inverse Lewis
number, F ≡ L/(c∆T ) is the Stephan number, and C ≡ (C∗ − C0)/∆C is the
concentration ratio. Since ε in the mush is very small, we neglect the mass diffusion
in the mush. Also, because of the thermodynamic equilibrium condition, (2.5), the
non-dimensional liquidus relation in the mush can be written as θ = Θ, which has
been introduced into (2.14b, c, d, f). Note that since the nutation angle φn is considered
fixed, Sn and Cn in (2.8a, b) are now constants. Nevertheless, because of the spin, the
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spin angle is a function of time, so that (2.8c, d) can be rewritten as

Ss(t) ≡ sinφs = sin (Ωt), Cs(t) ≡ cosφs = cos (Ωt), (2.17a,b)

namely both Ss and Cs are periodical functions of time with frequency Ω =
1
2
σ(−1)nsT

1/2
as , which is equivalent to the non-dimensional φ̇s. The dimensionless

parameters Tap and Tas are respectively the Taylor numbers for precession and spin,
defined as

Tap ≡
(

2H2φ̇p

ν

)2

, Tas ≡
(

2H2φ̇s

ν

)2

, (2.18a,b)

and, similarly, Tmp and Tms are respectively the Taylor numbers for precession and
spin of the mush, defined as

Tmp ≡
(

2Π0φ̇p

ν

)2

=
Tap

H2
, Tms ≡

(
2Π0φ̇s

ν

)2

=
Tas

H2
. (2.19a,b)

We note that the exponents np and ns account respectively for the sense of precession

and spin. For φ̇p > 0 or φ̇s > 0, respectively np = 0 or ns = 0, and for φ̇p < 0 or

φ̇s < 0, respectively np = 1 or ns = 1.
The boundary conditions as z →∞ are

θ → θ∞, Θ → 0, u→ 0, (2.20a–c)

at the melt/mush interface z = h(x, y, t) they are

θ = Θ,
∂θ

∂n
=
∂Θ

∂n
, [u · n] = 0, [θ] = 0, (2.21a–d )[

∂θ

∂n

]
= 0, χ = 1, [σn] = 0, (2.21e–g)

∂u2

∂n

∣∣∣∣
h+

= Λ

√
H
Π(1)

(u2|h+ −u2|h−), (2.21h)

and at z = 0 they are

θ = −1, u · n = 0. (2.22a,b)

In the following, based on (2.13) and (2.14) and the associated boundary conditions
(2.20–2.22), the flow induced by inclination and modified by rotation will be derived
analytically and the stability based on the induced flow will be analysed through a
numerical approach.

3. Flow induced by inclination
Before the onset of convection due to solidification, there is a flow induced by

the inclination of the system (Sample & Hellawell 1984; Neilson & Incropera 1993).
The induced flow is a result of the interaction between gravity and the pressure
gradient and modified by the Coriolis force, which will be investigated in this section.
Two kinds of rotation are considered: precession only and precession and spin. The
solutions for the induced flow are obtained under some assumptions, which will also
be discussed so that the requirements for the existence of the solutions can be clarified.
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3.1. Analytical solution

To investigate the induced flow, we need to solve (2.13) and (2.14) and the associated
boundary conditions (2.20–2.22), which are however too complicated to be solved
without assumptions. To simplify the problem, we assume that the horizontal dimen-
sion of the system (or the cooling tank) L is much larger than the characteristic height
of solidification H (which is about 1 cm in the experiment of Sample & Hellawell
1984), i.e.

L

H
� 1. (3.1)

When small-scale convection is absent from the system, a scale analysis of the
continuity equation yields

U

L
≈ W

H
, (3.2)

where U and W are respectively the characteristic velocities in the horizontal and
vertical directions. From (3.1) and (3.2) we obtain W � U. Meanwhile, to satisfy
(3.1), one can also derive from the scale analysis that the diffusion in the horizontal
direction is negligible when compared to that in the vertical direction, i.e.

∂2

∂x2
� ∂2

∂z2
,

∂2

∂y2
� ∂2

∂z2
. (3.3)

Due to the absence of small-scale fluid motion, the nonlinear advection terms, such
as the third term on the left-hand side of (2.13b–f) and (2.14e, f), are much smaller
than the pulling advection terms due to solidification, such as the second term
(containing ∂/∂z) on the left-hand side of these equations. This requires equivalently
that U/L� V/H or, after rewriting

L

H
� U

V
. (3.4)

Consequently, the temperature and concentration can be decoupled from the velocity.
In other words, the temperature and concentration are not influenced by the presence
of the flow induced by the inclination, and therefore will be the same as those in,
for example, Worster (1992) or Chen et al. (1994), in which the system is motionless
before the onset of convection. For convenience for the subsequent discussion, both
the temperature and the concentration are shown in the following. In the fluid layer,
they are

θb = θ∞ + (θi − θ∞) exp [−(z − hb)], Θb = θi exp

[
−
(
z − hb
ε

)]
, (3.5a,b)

where θi is the temperature (or concentration) at the melt/mush interface

θi =
( −ε

1− ε
)
θ∞, (3.6)

and hb is the mushy-layer height, which is a constant. In the mushy layer the
temperature distribution θb is expressed by the implicit function

z =
α−C
α− β ln

(
α+ 1

α− θb
)

+
C− β
α− β ln

(
β + 1

β − θb
)
, (3.7)
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and the porosity is a function of θb

χb =
C− θi
C− θb , (3.8)

where

α = A+ B, β = A− B, A = 1
2
(C+ θ∞ +F), B =

√
A2 −Cθ∞ −Fθi.

(3.9a–d )

In the above equations the subscript b denotes the basic state. The mushy-layer height
hb can be obtained by substituting θb = θi into (3.7).

With regard to the induced flow, taking into account (2.13b–d) and applying the
rigid-body rotation condition (2.20c), we find that the pressure distribution can be
expressed as

pb = p̄b(z, t) +Aθ∞[xSnSs(t) + ySnCs(t) + zCn]. (3.10)

We substitute (3.5)–(3.7) and (3.10) into (2.13b–d) and (2.14b–d) and find that the
velocity and the pressure satisfy the following equations. In the fluid layer they are[

1

σ

(
∂

∂t
− ∂

∂z

)
− ∂2

∂z2

]
ub − [(−1)npT 1/2

ap Cn + (−1)nsT 1/2
as ]vb

= [Rt(θb − θ∞)− RcΘb]SnSs(t), (3.11a)[
1

σ

(
∂

∂t
− ∂

∂z

)
− ∂2

∂z2

]
vb + [(−1)npT 1/2

ap Cn + (−1)nsT 1/2
as ]ub

= [Rt(θb − θ∞)− RcΘb]SnCs(t), (3.11b)

wb = 0, (3.11c)

HRm
∂p̄b

∂z
= [(−1)npT 1/2

ap SnCs(t)]ub − [(−1)npT 1/2
ap SnSs(t)]vb + [Rt(θb − θ∞)− RcΘb]Cn,

(3.11d)
and in the mushy layer they are

ub

Πb

− [(−1)npT 1/2
mp Cn + (−1)nsT 1/2

ms ]
vb

χb
= −Rm(Aθ∞ + θb)SnSs(t), (3.12a)

vb

Πb

+ [(−1)npT 1/2
mp Cn + (−1)nsT 1/2

ms ]
ub

χb
= −Rm(Aθ∞ + θb)SnCs(t), (3.12b)

wb = 0, (3.12c)

Rm
∂p̄b

∂z
= [(−1)npT 1/2

mp SnCs(t)]
ub

χb
− [(−1)npT 1/2

mp SnSs(t)]
vb

χb
− Rm(Aθ∞ + θb)Cn.

(3.12d)

The associated boundary conditions as z →∞ are

ub → 0, vb → 0, (3.13a,b)

and at z = hb they are

∂ub+

∂z
= Λ

√
H
Π(1)

(ub+ − ub−),
∂vb+

∂z
= Λ

√
H
Π(1)

(vb+ − vb−), p̄b+ = p̄b−.

(3.14a–c)
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The pressure distribution (3.10) plays an interesting and important role in the basic
state. The z-component of the pressure gradient balances the z-component of the fluid
mass in both the liquid and mushy layers, leading to wb = 0 in both layers. In the far
field, the x- and y-components of the pressure gradient also balance the corresponding
components of the mass of the fluid. Consequently, the fluid is motionless in the far
field while it moves along the interface due to the imbalance between the fluid mass
and the pressure gradient. Namely, near the melt/mush interface the buoyancy fails
to balance the fluid mass in the (x, y)-plane when the tank is tilted.

Since in the mushy layer (3.12a, b) are algebraic equations, they can be easily solved
and the solution after rearrangement is

ub ≡ ub + ivb

=
SnRm(Aθ∞ + θb)

∆m(z)
exp [i(φg − φm(z))], (3.15)

where

φg = −(Ωt+ 1
2
π), (3.16)

denoting the orientation of the gravity component in the (x, y)-plane, which changes
with time due to spin,

∆m(z) =

[
1

Π2
b

+

(
(−1)npT

1/2
mp Cn + (−1)nsT

1/2
ms

χb

)2]1/2

, (3.17a)

and the phase angle φm satisfies the relations

cosφm =
1

Πb∆m

, sinφm =
(−1)npT

1/2
mp Cn + (−1)nsT

1/2
ms

χb∆m

, (3.17b,c)

The velocity is a periodic function, changing with time with a frequency equal to
the spin angular velocity Ω.

To solve the velocity in the fluid layer, we let

Ub ≡ ub + ivb = Ûb exp (iφg). (3.18)

Substituting this into (3.11a, b) yields an ordinary differential equation. We solve this
equation by a formal approach and obtain the solution

Ûb =
SnRt(θi − θ∞)

∆t

exp [iφt − (z − hb)]− SnRcθi

∆c

exp [iφc − (z − hb)/ε]

+

{
−
(

1 + Λ

√
H
Π(1)

)
SnRt(θi − θ∞)

∆i∆c

exp (i[φt − φi − b(z − hb)])

+

(
1

ε
+ Λ

√
H
Π(1)

)
SnRcθi

∆i∆c

exp (i[φc − φi − b(z − hp)])

+Λ

√
H
Π(1)

SnRm(Aθ∞ + θi)

∆i∆m(hb)
exp (−i[φm(hb) + φi + b(z − hb)])

}
× exp [−(z − hb)/dE], (3.19)
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in which

dE =
1

((1/2σ) + a)
, a =

[
1

2

(
1

4σ2
+

√
1

16σ4
+ T 2

e

)]1/2

, (3.20a,b)

b =
Te

|Te|
[

1

2

(
− 1

4σ2
+

√
1

16σ4
+ T 2

e

)]1/2

, (3.20c)

cosφt =
1− 1/σ

∆t

, sinφt =
Te

∆t

, (3.20d,e)

cosφc =
(1/ε)(1/ε− 1/σ)

∆c

, sinφc =
Te

∆c

, (3.20f,g)

cosφi =
1/(2σ) + a+ Λ

√H/Π(1)

∆i

, sinφi =
b

∆i

, (3.20h,i )

∆t = [(1− 1/σ)2 + T 2
e ]1/2, ∆c = [((1/ε)(1/ε− 1/σ))2 + T 2

e ]1/2, (3.20j,k )

∆i =

[(
1

2σ
+ a+ Λ

√
H
Π(1)

)2

+ b2

]1/2

. (3.20l )

The parameter Te is defined as

Te ≡ (−1)nT 1/2
ap Cn + 1

2
(−1)nsT 1/2

as . (3.21)

With this parameter the combined effect due to spin and precession can be expressed
as a general trend, as will be shown in § 3.2.

Equation (3.19) illustrates that the flow in the fluid layer varies periodically with
time by a frequency equal to the spin angular velocity Ω, similar to that of the mushy
layer. The velocity also varies in the vertical direction and consists of three parts
differentiated by length scale. The first part is of the length scale of the thermal
boundary layer, varying vertically with the exponential function e−(z−hb), and will be
called the thermal-layer flow. The second part is of the length scale of the solute
boundary layer, varying with e−(z−hb)/ε, and will be called the solute-layer flow. The
third part is of the length scale of the Ekman layer, varying with e−(z−hb)/dE and
changing direction with a period 2π/b, and will be called the Ekman-layer flow. A
larger speed of rotation (in terms of larger Te) leads to a larger b and thus a smaller
period of turnaround of the Ekman-layer flow.

To more clearly illustrate these three components of the induced flow in the fluid
layer, we show in figure 2 their distributions with tank height for the case Tap = 106,
Tas = 0, and φn = 10◦. It is seen from figure 2(a) that the velocities of both the thermal-
layer flow and the Ekman-layer flow decrease exponentially with height. The velocity
of the solute-layer flow remains virtually the same except in the very-shallow solute
boundary layer above the interface, in which the velocity also decreases (although
very little) exponentially with height; it therefore makes very little contribution to
the induced flow, or the combination of these three components. In figure 2(b) one
can see that neither the thermal-layer flow nor the solute-layer flow changes direction
while the direction of the Ekman-layer flow changes periodically with height. More
precisely, near the fluid/mush interface, the direction of the Ekman-layer flow is
virtually opposite to that of the thermal-layer flow, so that the induced flow velocity
is small. At z ≈ 1.12 these two flows are in the same direction, so that the induced
flow has the largest velocity. Beyond this point, the thermal-layer flow dominates the
induced flow.
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Figure 2. (a) The velocity distributions along the z-axis of the thermal-layer flow, the Ekman-layer
flow, and the solute-layer flow. The velocities of both the thermal-layer and the Ekman-layer flows
decrease exponentially with height, while that of solute-flow remains virtually the same in the whole
fluid layer except in the shallow solute boundary layer above the interface, in which it also decreases
(although very little) with height. (b) The phase-angle variations with height of these three flows.
The phase angles of both the thermal-layer and the solute-layer flows remain the same over the
whole fluid layer (the two vertical lines) and that of the Ekman-layer changes periodically with
height with period 2π/b.

The coefficients of the velocity functions of (3.15) and (3.19) contain either
SnRm, SnRt, or SnRc, indicating that the induced flow is a result of the imbalance
between gravity and the pressure gradient in the (x, y)-plane when the angle between
gravity and the density gradient is greater than zero. Accordingly, when the system
rotates with a vertical axis, there is no induced flow (Lu & Chen 1997). Otherwise,
flow is induced by the components of both the pressure gradient and gravity in the
(x, y)-plane to move along the melt/mush interface (or the (x, y)-plane according to
the present coordinate system). Because of the inclined spin, the (x, y)-plane compo-
nents of both the pressure gradient and gravity change direction periodically with
frequency Ω. Consequently, the induced flows in both the fluid and mushy layers are
periodic functions of Ω, see (3.15) and (3.19). This however does not apply to the
precession-only case because

gx + igy = (Sng) exp (iφg). (3.22)

By comparing (3.22) with the exponential terms of (3.15) and (3.19), one can see that
the phase-angle difference between the induced flow and gravity is independent of
time, implying that the induced flow due to inclination is steady in the precession-only
case.

3.2. Examples of induced flow

To illustrate more concretely the induced flow due to the inclination, we compute
(3.15) and (3.19) for the 26% ammonium chloride solution, whose physical properties
can be obtained from Chen et al. (1994). Note that according to the growth rate
shown in Chen, Yang & Lu (1993), Tap = 106 (or Tas = 106) is equivalent to the
angular velocity 0.7 r.p.m., and Tap = 108 (or Tas = 108) to 7 r.p.m. A Taylor number
within this range was considered in the experiment of Sample & Hellawell (1984),
and accordingly will also be considered in the following analysis. We assume also
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Figure 3. The induced flow in both the fluid and the mushy layers for a 26 wt% ammonium
chloride solution when Tap = 106, Tas = 0, and np = 0. (a) The induced flow in the fluid layer.
(b) The induced flow in the mushy layer. (c) The phase angle difference between the induced flow
and the gravity component in the (x, y)-plane. (d) An enlargement of the curve enclosed by the
dotted rectangle in (c), where one can see that the direction of the induced flow in the Ekman layer
changes by about 40◦ or more. In (a) and (b) three inclination angles are shown, illustrating that
larger inclination angle leads to a larger induced velocity.

that the mush is of homogeneous permeability Πb = 1, as did in Worster (1992) and
Chen et al. (1994).

Figure 3 illustrates the case Tap = 106 and Tas = 0; the system rotates with
precession only. The velocity distribution shown in figure 3(a) indicates that most
of the induced flow occurs in the fluid layer while that in the mush is relatively
much smaller and virtually cannot be seen in the figure. In the fluid layer, the
induced velocity increases sharply with height from the melt/mush interface, reaches
a maximum within a short distance and then decreases exponentially into the bulk
melt. The sharp velocity gradient is confined to the Ekman layer, whose thickness is
of O(dE), where dE ≈ (|Te|/2)−1/2 = 0.045. The Ekman layer is very thin compared
with the thermal boundary layer whose thickness is of O(1), while it is larger than
the solute boundary layer whose thickness is of O(ε), where ε = O(10−2) for most
of the aqueous solutions. In the mushy layer (figure 3b), due to the high resistance
to the flow, the induced velocity is of O(10−1), much smaller than that of the fluid
layer, which is of O(102), and also increases with inclination angle. We note that
the mushy layer is separated into two regions in terms of flow direction. One lies in
0 < z < 0.525, where the phase angle of the velocity (φu) differs from that of gravity
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Figure 4. The induced flow for various Tas and Tap when the spin and precession are in the opposite
sense of rotation, i.e. nS = 0 and np = 1. In each plot three curves corresponding to different φn are
shown, whereas the velocity in the mush is too small to be seen. From left to right, the three columns
are respectively for Tas = 0, 106 and 107. From top to bottom, the three rows are respectively for
Tap = 0, 106 and 107. Note that the trend of the change of induced flow with Tas and Tap is not
straightforward. A new parameter, the effective Taylor number Te defined in (3.21), is employed to
account for the rotation effect in a general sense, as will be shown in figure 5.

(φg) by 180◦ (figure 3c), suggesting that along the interface the pressure gradient is
larger than gravity so that the flow moves upwards along the interface. The other
region lies in 0.525 < z < hb, where the pressure gradient is smaller than gravity,
and the flow moves downwards along the interface. Note that the mushy-layer depth
for the 26% ammonium chloride solution is obtained by substituting (3.6) into (3.7),
yielding hb = 0.991. At the melt/mush interface, due to the use of (3.14a, b), there is a
difference between the flow velocities in the fluid and the mushy layers, and so there
is a difference between the phase angles of the two flows. More precisely, φu − φg
changes from 360◦ in the mushy layer to 310◦ in the fluid layer (see figures 3c and 3d).

It is also seen from figure 3(c) that, due to the slow motion in the mush, the Coriolis
force in the mush is negligible so that the flow direction in the mush does not change
with height. In the fluid layer, however, the flow direction in the Ekman layer changes
with height dramatically (figure 3d): φu−φg decreases from about 310◦ to about 270◦
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Figure 5. The velocity profiles of the induced flow corresponding to three different Te. Note that a
larger Te leads to a smaller induced velocity.

within the Ekman layer and then remains virtually the same in the thermal boundary
layer. As a result, the flow in the thermal boundary layer, which extends to the far
field, is in a direction leading gravity by 90◦ (i.e. φu − φg = 270◦), and this applies to
all the cases considered in the present paper.

To investigate the combined effect of spin and precession on the induced flow,
we illustrate in figure 4 cases in which spin and precession are of opposite sense
of rotation, i.e. ns = 0 and np = 1. The plots from left to right are respectively for
Tas = 0, 106 and 107, and those from top to bottom are respectively for Tap = 0, 106

and 107. The trend of the combined effect is not straightforward. The maximum
velocity occurs when Tas = 106 and Tap = 106 (figure 4d) and the minimum velocity
occurs when Tas = 0 and Tap = 107 (figure 4f). To illustrate the combined effect
due to spin and precession in a more systematic way, we employ the effective Taylor
number Te given in (3.21). As shown in figure 5, the induced flow velocity decreases
with increasing Te, suggesting that the induced flow is inhibited by higher rotation
speed, which is explained as follows. It is known that the induced flow results from
the interaction among the pressure gradient, gravity and the Coriolis force. As the
inclination angle is fixed, both the pressure gradient and gravity are then fixed.
The Coriolis force will accordingly be fixed also, to keep these three external forces
balanced. Since the Coriolis force is the product of induced flow velocity and the
rotation speed, as the rotation speed increases the induced velocity must decrease.

3.3. Limits to the validity of the induced-flow solution

The derivation of the induced flow of § 3.1 is made under the assumption that the
dimensions of the cooling tank (or the system) in both the vertical and the horizontal
directions are much larger than the characteristic length of solidification H , so that
both the nonlinear advection term and the diffusion term in the horizontal direction
can be neglected and the reduced equations can be solved exactly. In other words, the
dimensions of the cooling tank present limitations, which are different for the systems
under spinning and under precession because the intrinsic features of the induced
flow of these two cases are different. In this section, we will discuss for the two cases
of precession only and spin and precession the limitations due to the cooling tank
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dimension so that the requirements for the existence of the induced flow shown in
§ 3.1 can be determined.

3.3.1. Precession-only case

Although there is a precession angular velocity φ̇p in the system, it does not appear
with t in the same term of the governing equations because, as explained in the
previous section, the direction of gravity with respect to the cooling tank remains
the same during precession. Accordingly, the time scale of solidification H/V still
dominates the system. The unsteady terms in the governing equations are therefore
of the same order of magnitude as the terms due to interface growth (i.e. the term
containing ∂/∂z). Consequently, due to the assumptions leading to the requirements
described by (3.1) and (3.4), the horizontal dimension of the cooling tank must satisfy
both of these two conditions. Based on these two conditions, we make a scale analysis
for (3.19), considering the case for 26 wt% ammonium chloride solution, yielding

U/V ∝ SnRt/∆t. (3.23)

By substituting it into (3.4) and considering the precession-only case (i.e. Tas = 0), we
obtain

L

H
� SnRt

[(1− 1/σ)2 + TapC2
n ]1/2

. (3.24)

For a tank containing 26% ammonium chloride solution precessing with an angular
velocity 1 r.p.m. around an axis of inclination angle 20◦–30◦, the physical parameters
in (3.24) are of the following order of magnitude: Rt = O(107), σ = O(10) and
Tap = O(106). In such a system, according to (3.24), the dimension of the tank
requires L/H � O(104), which is more restrictive than (3.1). Since H ≈ 1 cm, the
horizontal dimension of the tank is required to be much larger than the normal scale
considered in either industry or laboratory. The tank used by Sample & Hellawell
(1984), for example, had horizontal radius 7.5 cm and height is 16 cm, which do not
satisfy the requirements, so that the induced flow shown in § 3.1 does not exist in their
system. A spiral motion may instead occur because of the blockage to the induced
flow imposed by the sidewalls of the tank. We however note that a small inclination
angle and/or a high precession angular velocity may allow a smaller dimension of
the tank. For example, for a system precessing by 10 r.p.m. with respect to an axis
of inclination angle equal to 5◦, the requirement of (3.24) becomes L/H � O(102),
which is more acceptable.

The requirement for the height of the tank, Ht should be that it is much larger
than the depths of both the thermal and the solute boundary layers:

Ht

H
� 1. (3.25)

Equation (3.25) applies also to the condition that requires the satisfaction of rigid
body rotation of the fluid at far field.

3.3.2. Precession-and-spin case

As the tank is spinning (with or without precession) with respect to an inclined
axis, the direction of gravity changes periodically with frequency equal to the spin
angular velocity φ̇s. As a result, the characteristic time scale of the system is φ̇−1

s . If
the Strouhal number of spin is large, namely, φ̇sL/U � 1, this can be rewritten by
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dividing both side by H and by employing the definition of (2.18b):

L

H
� U

φ̇sH
=

2U

σT
1/2
as V

. (3.26)

The nonlinear advection term can thus be neglected compared with the unsteady term.
It is much easier to satisfy (3.26) than (3.4) because generally Tas � 1. Consequently,
the horizontal dimension of the cooling tank can be determined by the following
condition:

L

H
� 2SnRt

σT
1/2
as [(1− 1/σ)2 + T 2

e ]1/2
, (3.27)

which is obtained by substituting (3.23) into (3.26). For a tank containing a 26%
ammonium chloride solution spinning with a speed of 1 r.p.m. with an inclination
angle of 20◦–30◦, the requirement of (3.27) is L/H � O(1), which is similar to the
requirement of (3.1). For a higher φ̇s, the requirement of (3.27) will become less strict
than (3.1).

As we have shown previously, when the tank spins with an inclined axis, the
induced flow changes direction with a frequency equal to the spin angular velocity Ω
(or equivalently φ̇s). The projection of a fluid-particle trajectory on the (x, y)-plane is
a circle and the radius of the circle is equal to the right-hand side of (3.26). Equation
(3.26) requires that the horizontal dimension of the tank be much larger than the
radius of the trajectory circle, which is about the same order of magnitude as the
characteristic length of solidification (or the mushy-layer depth). In the mush, due to
the fact that the velocity of the induced flow is much smaller than that of the fluid
layer, the radius of the trajectory circle will be much smaller than the depth of the
mush.

The requirement for the height of the tank due to inclined spin is considered in the
following. To satisfy the rigid-body rotation condition at the far field, or to ignore
the effect of the possible occurrence of a gravity wave on the free surface, the height
of the tank must be much larger than its horizontal dimension, namely

Ht � L. (3.28)

Together with the requirement of (3.1) and (3.26), the sufficient condition for the
existence of the induced flow for the spin case (with or without precession) is
Ht � L� H . For the experiment with 26% ammonium chloride solution, H ≈ 1 cm,
so that the cooling tank used by Sample & Hellawell (1984) would satisfy the
requirement.

4. Linearized perturbation equations in the mush
In implementing the linear stability analysis for the flow of § 3, there are at least

two essential numerical difficulties in solving these equations. First, since the induced
flow changes direction with height, it is necessary to consider the instability modes
corresponding to all the directions from 0◦ to 360◦ (in fact due to the complex
conjugation only 0◦ to 180◦ needs to be considered). The scale of the computation is
therefore extremely big. Additionally, since the coefficients of the perturbed equations
and boundary conditions are functions of time, one needs to employ the Floquet
theory (see Murray et al. 1993) to deal with the time-periodic coefficients. Use of
Floquet theory, increases the order of differentiation of the equations from fifteen to
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30L+15, where L is the number of the terms of the Fourier time series. For a medium
Taylor number, L > 5 is quite usual.

To render the linear stability analysis numerically tractable, it is necessary to
reduce the order of the differentiation. The way to achieve this goal is to focus on the
stability in the mushy layer only, as done by, for example, Amberg & Homsy (1993),
Anderson & Worster (1995). The main reason for their focusing on the stability in the
mushy layer is that the convection in the mush eventually leads to the formation of
chimneys (or freckles). They conjectured also that the characteristics of the convection
in the mush are hardly influenced by the flow in the fluid layer. This conjecture has
been confirmed by Emms & Fowler (1994) who showed that the vigorous salt-finger
convection above the fluid/mush interface has a small effect on the convection in the
mush.

To derive the linear equations of the mushy layer, we introduce small perturbation
quantities together with the basic state into (2.14) and neglect the products of small
quantities. After eliminating the pressure and the velocities in both the x- and y-
directions, the small perturbation equations in the mushy layer are(

∂

∂t
− ∂

∂z
+ ub

∂

∂x
+ vb

∂

∂y
− ∇2

)
θ +F

(
∂

∂t
− ∂

∂z

)
χ = −θ′bw, (4.1a)

[
χb

(
∂

∂t
− ∂

∂z

)
+ ub

∂

∂x
+ vb

∂

∂y
− χ′b

]
θ +

[
(θb − C)

(
∂

∂t
− ∂

∂z

)
− θ′b

]
χ = −θ′bw,

(4.1b){
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+
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b
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∂
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∂
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ς =
Πb

χb

{
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mp
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∂x
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∂y

)(
Π
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− SnRmΠb

[
Cs(t)

∂

∂x
− Ss(t) ∂

∂y

]
θ. (4.1d)

In the above equations, θ is temperature (or equivalently concentration), w and
ς are respectively the velocity and the vorticity in the vertical direction, χ is the
porosity, and Π is the permeability. All these are small perturbation quantities. Also,
θb, ub, vb, χb and Πb are respectively the temperature, the x-direction velocity, the y-
direction velocity, the porosity, and the permeability of the basic state as shown in § 3.
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The prime denotes differentiation with respect to z. The planar Laplacian operator
∇2
H is defined as ∇2

H = ∂2/∂x2 + ∂2/∂y2. In the following analysis we assume that the
permeability is a uniform constant, i.e. Πb = 1 and Π = 0 (Worster 1992; Chen et al.
1994) to further simplify the problem.

Equations (4.1) consists of five orders of differentiation and needs accordingly five
boundary conditions. The perturbed boundary conditions at the solid/mush interface
z = 0 are

θ = 0, w = 0. (4.2a,b)

At the fluid/mush interface z = hb, the conditions are

θ = 0, χ = 0. (4.3a,b)

These result from the assumptions that the mushy-layer height is constant, the porosity
is unity, and the temperature is fixed at the value of the basic state. Consequently, the
perturbations of both the temperature and porosity vanish. Regarding the velocity
at z = hb, we consider the pressure to be fixed at the basic state such that along the
interface the perturbation of pressure also vanishes, i.e.

p = 0. (4.4)

Imposing a small perturbation on the induced velocity, (3.15), and substituting this into
(2.14b, c), yields the perturbed momentum equations in both the x- and y-directions
as

u

Πb

− bCn(−1)npT
1/2
mp + (−1)npT

1/2
ms c

χb
v +

Sn(−1)npT
1/2
mp Cs(t)

χb
w

+

[
Cn(−1)npT

1/2
mp + (−1)nsT

1/2
ms

]
vb

χ2
b

χ = −Rm
[
∂p

∂x
+ SnSs(t)θ

]
, (4.5a)

v

Πb

+
bCn(−1)npT

1/2
mp + (−1)nsT

1/2
ms c

χb
u− Sn(−1)npT

1/2
mp Ss(t)

χb
w

− [Cn(−1)npT
1/2
mp + (−1)nsT

1/2
ms ]ub

χ2
b

χ = −Rm
[
∂p

∂y
+ SnCs(t)θ

]
. (4.5b)

For the case of 26 wt% ammonium chloride solution and moderate rotation speed,
the Taylor number in the mush is very low, i.e.

Tmp � 1, Tms � 1. (4.6a,b)

The Coriolis force in the mush is accordingly negligible. As a result, (4.5a,b) can be
further simplified as

u

Πb

≈ −Rm
[
∂p

∂x
+ SnSs(t)θ

]
,

v

Πb

≈ −Rm
[
∂p

∂y
+ SnCs(t)θ

]
. (4.7a,b)

By substituting (4.3a) and (4.4) into (4.7a, b), one obtains at z = hb

u− ≈ 0, v− ≈ 0, (4.8a,b)

where the index − denotes under the interface. After substituting (4.8a, b) into the
continuity equation, we obtain at z = hb

∂w−
∂z
≈ 0. (4.9)
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Consequently, the boundary conditions at the fluid/mush interface (z = hb) are
(4.3a, b) and (4.9), and at the mush/solid interface (z = 0) they are (4.2a, b), and the
governing equations of the mush are (4.1). These equations constitute the mathematical
model governing the stability of the flow in the mush.

5. Linear stability analysis I: precession-only case
In this section the linear stability analysis in the mushy layer is implemented for

the precession-only case. The governing equation is (4.1) and the boundary conditions
are (4.2a, b), (4.3a, b) and (4.9). The basic flow is given by (3.15), which, as shown in
figure 3(b), is a parallel flow consisting of two separated flows of opposite directions.
Since the coefficients of (4.1) are functions of z only, we can apply the normal mode
expansion to the dependent variables θ(x, y, z, t)

w(x, y, z, t)
ς(x, y, z, t)
χ(x, y, z, t)

 =


θ̂(z)
ŵ(z)
ς̂(z)
χ̂(z)

 exp [ωt+ i(kxx+ kyy)] + c.c. (5.1)

By substituting (5.1) into (4.1), we obtain the following ordinary differential equations:

(D2 + D− ω − k2 − ikyvb)θ̂ +F(D− ω)χ̂ = θ′bŵ, (5.2a)

[χb(D− ω) + χ′b − ikyvb]θ̂ + [(θb −C)(D− ω) + θ′b]χ̂ = θ′bŵ, (5.2b)(
D2 − k2 +

ikxSnT
1/2
mp χ

′
b

χ2
b

)
ŵ + T 1/2

mp

(
ikySn + CnD

)( ς̂

χb

)
− ikxCnT

1/2
mp D

(
vbχ

χ2
b

)
= Rm(Cnk

2 + ikySnD)θ̂, (5.2c)

ς̂ =
T

1/2
mp

χb
(ikySn + CnD)ŵ +

ikyCnT
1/2
mp vb

χ2
b

χ− ikxSnRmθ, (5.2d)

where D = d/dz. The boundary conditions at z = hb are

θ̂ = 0, χ̂ = 0, Dŵ = 0, (5.3a, b, c)

and at z = 0 are

θ̂ = 0, ŵ = 0. (5.4a,b)

Equations (5.2), (5.3) and (5.4) constitute an complex eigenvalue problem

F = F(Rm, k, ω; Sn, φk, Tmp,F,C,A, θ∞), (5.5)

where φk is the angle between the direction of propagation of the disturbance and
the x-axis, related to the horizontal wavenumbers kx and ky by

kx = k cos (φk), ky = k sin (φk). (5.6)

To analyse (5.5), it is necessary to consider 0◦ 6 φk 6 180◦. Physically, this means
that the stability characteristics of the disturbance change when the direction of
propagation changes.

We consider two different models based on different assumptions: (1) small φn and
(2) large φn. For the small-φn model, the equations can be greatly simplified so that
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Figure 6. (a) The neutral curves and (b) the oscillatory frequency ωi obtained by the small-φn model
for various S ′n. The Coriolis force is neglected. All the instability modes of S ′n > 0 are of oscillatory
nature, travelling in the (x, y)-plane with a wave speed proportional to ωi. The instability modes of
S ′n = 0 are steady in nature.

the numerical integration can be implemented more efficiently and the stability of
the flow in a wide range of physical parameters can be analysed. The validity of the
results of the small-φn model can be checked by the results of the large-φn model.
Although the computation process is more tedious, the analysis based on the large-φn
model provides a more thorough picture of the stability of the flow under precession.

5.1. Small-φn case

Because φn is small we may assume

Cn ≈ 1. (5.7)

Based on (5.7) and Tmp � 1, (5.2) can be simplified as

(D2 + D− ω − k2 − ikv̄b)θ̂ +F(D− ω)χ̂ = θ′bŵ, (5.8a)

[χb(D− ω) + χ′b − ikv̄b]θ̂ + [(θb −C)(D− ω) + θ′b]χ̂ = θ′bŵ, (5.8b)

(D2 − k2)ŵ = Rm(k2 + ikS ′nD)θ̂, (5.8c)

in which

v̄b = −S ′nRm(Aθ∞ + θb), S ′n = Sn sin (φk), (5.9a,b)

where (5.9b) is the so-called Squire transformation. As shown in (5.9), the effect
due to different φk is included in the parameter S ′n, which is called the effective-sine
of the inclined angle. By using this new parameter, there is no need to compute
all the disturbances in the different propagation directions so that the scale of the
computation is greatly reduced.

Note that the v̄b of (5.8) is the component of the induced flow in the direction
in which the disturbance propagates. It implies that, in the mush with a small-φn
precession and having negligible Coriolis force, the disturbance is affected only by
the component of the induced flow in the direction of the disturbance. Since in the
present case the induced flow is in the y-direction, the disturbance in the x-direction
is not influenced by the induced flow, which is consistent with the result of Ingersoll
(1966), who considered the convective instabilities in plane Couette flow.

Equation (5.8) and boundary conditions (5.3) and (5.4) constitute a complex eigen-
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Figure 7. (a) The critical wavenumber kc, (b) the critical Rayleigh number Rcm, and (c) the critical
oscillatory frequency ωc

i corresponding to the case of figure 6. It is seen that for a larger S ′n, the
most-unstable mode is of larger wavelength (inverse of wavenumber), greater stability, and faster
travelling wave velocity.

value problem, which is solved by the shooting technique developed by Keller (1976),
in which an orthonormalization process is applied to avoid the loss of linear indepen-
dence of integration. The iteration procedure developed by Powell (1970) is employed
to seek the convergence of the eigenvalues.

Figure 6 illustrates the neutral curves as well frequencies of the instability modes
for various S ′n. It is found that the instability modes are steady in nature and
most unstable when S ′n = 0 (because ωi = 0). The instability mode corresponding
S ′n > 0 is more stable, being a wave travelling with a wave speed proportional to
the oscillatory frequency ωi. The case of S ′n = 0 corresponds to two possibilities: (1)
φk = 0◦, 0◦ 6 φn 6 90◦ and (2) φn = 0◦, 0◦ 6 φk 6 180◦, according to (2.8) and (5.9b).
For the first possibility, the steady mode appears as a wave vector pointing in a
direction perpendicular to the induced flow, which is the so-called longitudinal mode
of instability. Physically, it means that for a system precessing with any inclination
angle in the range 0◦ 6 φn 6 90◦, the most-unstable mode is the longitudinal mode.
The modes propagating in the other directions are invariably more stable and thus
will not occur normally. Similar phenomena were also found by, for example, Linden
(1974) and Forth & Wheeler (1992), in which double-diffusive convective flow is
affected by the imposed shear flow, inducing a longitudinal instability mode, which
turns out to be the most unstable one. For the second possibility, the system precessing
around a vertical axis, the most-unstable mode may propagate without any preferred
direction. In other words, the instability modes in different directions are of equal
stability and steady in nature, as shown by Lu & Chen (1997).

We plot in figure 7 the critical Rayleigh number Rcm, the critical wavenumber kc,
and the corresponding oscillation frequency ωc

i for various S ′n. It is shown that the
system is more stable for larger S ′n. Since larger S ′n means either larger φn or larger
φk , the results therefore imply two possibilities in a physical sense: First, as shown
in § 3 and in the present section, larger φn leads to a larger induced flow and a more
stable state, suggesting that the induced flow is stabilizing the system. Secondly, a
larger φk means the induced flow (in the y-direction) has a larger component in the
propagation direction, resulting in a more stable state. Meanwhile, the most-unstable
mode is also of the largest wavenumber (or the smallest wavelength). As the system
precesses with an axis of φn > 0◦ (inclined rotation), the instability mode in any
direction behaves like a travelling wave. The wave speed (proportional to ωc

i ) is
higher for larger S ′n.
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Figure 8. The neutral curves obtained by the three different mathematical models. Heavy curve:
small-φn model. Fine curve: large-φn model with Coriolis force effect. Fine curve with open circles:
large-φn model without Coriolis force effect. (a) Sn = 0.2, φk = 0◦; (b) Sn = 0.4, φk = 0◦.

5.2. Large-φn case

The assumption of small φn leads to the simplification that the buoyancy component
in the direction of the solute gradient (or the z-direction) does not change with φn,
which to some extent does not reflect reality. This assumption will be lifted in this
section so that the effect due to varying φn can be investigated. Meanwhile, due to
the result shown in § 3 that a larger φn leads to a larger induced flow and in turn
results in a larger Coriolis force, we will thus in this section also study the effect of
the Coriolis force on the stability of the system. The governing equation now is (5.2)
and the boundary conditions are again (5.3) and (5.4).

For the case of large φn it is not feasible to apply the Squire transformation to (5.2).
It is therefore necessary to look into the effect due to varying φk . Figure 8 illustrates
the neutral curves of the case φk = 0◦, and two inclination angles Sn = 0.2 and
Sn = 0.4 are considered. In each plot, the heavy curve shows the results obtained from
the small-φn model. The fine curve is the results of the large-φn model in which the
Coriolis force, accounted for by a non-zero Taylor number Tap = 108 (or equivalently
Tmp = 8.2×10−6), is considered. The fine curve with open circles represents the results
of the large-φn model when no Coriolis force is considered, i.e. Tap = 0. Results show
that, first, for both the cases considered, the fine curve and the fine curve with circles
virtually overlap each other, suggesting that the Coriolis force in the mush under
moderate speed of precession does not influence the stability of the mush. Secondly,
the Rm of the large-φn model (fine curve) is invariably larger than that of the small-φn
model (heavy curve), reflecting the fact that the reduction in buoyancy component in
the z-direction stabilizes the system. This implies also that the neglect of the buoyancy
reduction along the z-direction in the small-φn model can become crucial when φn is
not small.

To elucidate further the effect of the induced flow, we focus on the mode k = 2.4 to
investigate its stability for different angles of propagation φk . The inclination angel
Sn = 0.4 is considered in figure 9. The mode for φk = 90◦, which propagates in the
positive y-direction because ωi is negative and therefore is a transverse mode, is the
most stable mode and is of largest wave speed compared with the modes propagating
in the other directions. This implies again that the induced flow stabilizes the modes in
the same direction. The most unstable mode is for φk = 0◦ or 180◦ (or the longitudinal
mode) because the stabilizing effect due to the induced flow does not influence this
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Figure 9. The variations of Rm and ωi with φk for the instability mode of k = 2.4 and Sn = 0.4.
Heavy curve: small-φn model. Fine curve: large-φn model.

mode. It is however noted that the precession also causes a rotation component in
the (x, y)-plane, whose direction is aligned with the induced flow. Busse & Kropp
(1992) and Matthews & Cox (1997) showed that when there is a rotation axis aligned
with the direction of the shear flow, the most unstable buoyancy-driven instability
mode is an oblique roll. However, for the present mush under inclined rotation in
which an aqueous ammonium chloride solution is used, the effect of precession can
be ignored if the precession speed is not high. It turns out that the present case
approaches the limiting case of zero rotation of either Busse & Kropp or Mathews
& Cox. Consequently, the most unstable mode is the longitudinal roll.

6. Linear stability analysis II: precession-and-spin case
When the cooling tank inclined with φn rotates with simultaneously precession and

spin, the induced flow is a periodic function, varying with time with frequency equal
to the spin angular velocity Ω. We apply Fourier transformation with respect to both
the x- and y-directions to (4.1) and neglect the Coriolis effect because of the evidence
given in the precession-only case, yielding(

∂

∂t′
− ∂

∂z
− iÛbk sin (Ωt′) + k2 − ∂2

∂z2

)
θ̂ +F

(
∂

∂t′
− ∂

∂z

)
χ̂ = −θ′bŵ, (6.1a)

[
χb

(
∂

∂t′
− ∂

∂z

)
− iÛb k sin (Ωt′)− χ′b

]
θ̂ +

[
(θb − C)

(
∂

∂t′
− ∂

∂z

)
− θ′b

]
χ̂ = −θ′bŵ,

(6.1b)(
∂2

∂z2
− k2

)
ŵ = Rm

{
iSn k sin (Ωt′)

∂

∂z
+ Cnk

2

}
θ̂, (6.1c)

where Ûb is basic flow induced by inclined precession and spin, defined as

Ûb = SnRm(Aθ∞ + θb), (6.2)

and t′ is the time shift for the mode propagating in the direction of φk , defined as

t′ ≡ t+
φk

Ω
. (6.3)
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When deriving (6.1), we find that the wavenumbers in the x- and y-directions always
appear together with the following relation:

kx sin (Ωt) + ky cos (Ωt) = k sin (Ωt+ φk). (6.4)

Thus, when Ω is larger than zero, through defining the time shift t′, φk is absent
from the governing equations, so the scale of computation can be greatly reduced.
Equations (6.3) and (6.4) suggests that, for the present system spinning (with or
without precession) with an inclined axis, an instability mode propagating in one
direction has a phase which lags behind another mode propagating in a different
direction by the so-called temporal-phase φk/Ω.

Equation (6.1) is a homogeneous differential equation, and can be solved by Floquet
theory. The dependent variables are expanded into the following series: θ̂(z, t)

ŵ(z, t)
χ̂(z, t)

 =
∑
|l|6L

 θl(z)
wl(z)
χl(z)

 exp [(ω + ilΩ)t′], (6.5)

where ω = ωr + iωi. The real part ωr determines the stability of the basic state,
namely the system is unstable when ωr > 0, is stable when ωr < 0, and is neutral
when ωr = 0. By substituting (6.5) into (6.1) and by applying the orthogonality of the
Fouries series of (6.5), we obtain the following ordinary differential equations:

[D2 + D− [k2 + ωr + i(ωi + lΩ)]] θl +
kUb

2
(θl−1 − θl+1)

+F(D − ωr − i(ωi + lΩ))χl = θ′bwl, (6.6a)

[χbD + χ′b − χb[ωr + i(ωi + lΩ)]]θl +
kUb

2
(θl−1 − θl+1)

+[(θb −C)D + θ′b − (θb −C)[ωr + i(ωi + lΩ)]]χl = θ′bwl, (6.6b)

(D2 − k2)wl =

(
kSnRm

2

)
D(θl−1 − θl+1) + CnRmk

2θl. (6.6c)

And the associated boundary conditions at z = hb are

θl = 0, χl = 0, Dwl = 0, (6.7a,b,c)

and at z = 0 are

θl = 0, wl = 0. (6.8a,b)

In the above equations |l| 6 L. Equation (6.6) is a homogeneous equation of order of
differentiation 10L+5. Equations (6.6), (6.7) and (6.8) constitute a complex eigenvalue
problem, to be solved by the same shooting technique as employed in § 5.

We consider again the 26% ammonium chloride solution. From several numerical
tests we found that the number of terms of (6.5) required for a convergent solution
decreases with increasing Ω, as indicated by Murray et al. (1993). For Ω = 500–50 000
(equivalent to 0.07–7 r.p.m., Tas = 104–108), L = 5 is large enough to make the
iteration converge.

Note that, in the present coordinate system (the x, y, z system in figure 1) spinning
with the tank, gravity changes direction with frequency Ω. Similarly, the induced flow
(figure 3) in both the fluid and mushy layers is spinning with the frequency Ω. This
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Figure 10. (a) The neutral curves of various φn and (b) the variation of Rcm with φn for a system
rotating with a spin angular velocity Ω = 5000(≈ 0.7 r.p.m.). All the instability modes are oscillatory,
with a frequency equal to Ω.

suggests that the instability mode is independent of the direction of propagation,
namely the instability modes propagating in any direction have the same stability
characteristics, e.g. the same Rm, k, ωi, etc.

Based on this we can explain the result shown in figure 10 as follows. Figure 10
illustrates the result of the case Ω = 5000 (0.7 r.p.m., showing the variation of Rm
with both k and φn. It is found that, when the system is spinning (with or without
precession), the instability modes are synchronous with the spin because ωi = 0,
namely the instability mode varies its amplitude with time synchronously with the
change of the directions of both gravity and the induced flow. The most critical
mode for each different φn has the same critical wavenumber kc = 2.4. This critical
mode may appear as a wave propagating in any direction, quite opposite to the
precession-only case in which the most unstable wave propagates perpendicularly to
the induced flow (i.e. the longitudinal mode). It is also noted that Rcm increases with
φn (figure 10b), indicating that the system is more stable for a larger inclination angle.
It is also found that the results for different Ω only show small differences, reflecting
the fact that the spin effect on the system is applied through the Coriolis force,
which has been neglected in the analysis since the induced flow is very small in the
mush.

The relative importance of the induced flow and the buoyancy reduction along the
thermal gradient can also be shown from figure 10. When the tank is inclined, the
buoyancy reduces over the height of the tank by a factor of approximately cos (φn).
Applying this idea to figure 10, we find that Rcmcos (φn) is roughly constant at 25.
This implies that the primary stabilizing action comes from the buoyancy reduction.
The induced flow has little influence on stabilizing the system. This is perhaps not
surprising since the induced flow is very weak in the mush.

In the present system, a large number of terms (at least 10) are needed to get a
convergent solution for the case of small spin rate, for example, Ω = O(1). However,
fortunately, a spin rate of this order is equivalent to a very small r.p.m. value which
is not realistic in either experiment or industry. As shown in § 3.2, the induced flow
is not valid for the case of low r.p.m. and we thus ignore this case in the present
study.



120 C. A. Chung and F. Chen

7. Concluding remarks
We have considered a system containing an aqueous ammonium chloride solution

unidirectionally solidified from below, to which a rotation including spin and/or
precession with an inclined axis is imposed. We first consider the two-layer system of
a fluid layer overlying a mushy layer to examine the flow induced by the inclination.
Based on this induced flow, which is obtained analytically, we implement a linear
stability analysis for the flow in the mushy layer. The reason for making the simplifi-
cation of considering only the mushy layer is twofold. First, the flow in the mush has
been thought to be responsible for the formation of the freckles in metallic castings.
Secondly, it is too lengthy to tackle the two-layer system, owing to the numerical
difficulties. In brief, inclined rotation invariably stabilizes the flow in the mushy layer.
This general conclusion is reached on the bases of the present results, which are
summarized in the following categories: (a) the induced flow, (b) the stability in the
mush and (c) the limitations of the solution.

(a) Induced flow

(1) Neither the basic-state temperature nor concentration distributions of the
system are influenced by the inclined rotation. The solute boundary layer is
potentially unstable with respect to a small disturbance.

(2) The inclination induces a strong shear flow in the fluid layer, which is modified
by the rotation. The maximum velocity is O(103) to O(144) larger than the induced
flow in the mushy layer. The average velocity of the induced flow in the mush is of
about the order as the speed of the freezing front. The induced flows in both layers
move in the direction parallel to the flat fluid/mush interface (or the x, y-plane).

(3) The induced flow in the fluid layer is composed of three parts. First, there is
a thermal-layer flow of thickness O(1) in which the velocity decreases exponentially
with height while its direction remains the same, leading gravity by 90◦. Secondly,
there is a solute-layer flow of thickness O(ε) where both the velocity and the flow
direction remain virtually the same in the whole fluid layer except in the shallow solute
boundary layer above the fluid/mush interface, in which the velocity also decreases
(although only a little) exponentially with height. Thirdly, there is an Ekman-layer
flow of thickness O(dE) in which the velocity decreases exponentially with height
dramatically and decays to zero shortly beyond the layer. The Ekman-layer flow
changes its direction periodically with period 2π/b.

(4) The induced flow in the mush consists of two separated flows, drifting in
the opposite directions, one at 180◦ (or the y-direction, which is also the direction of
gravity) and the other at 360◦ with respect to the gravity component in the (x, y)-plane.

(5) For an aqueous solution, such as the ammonium chloride solution considered
in the present study, ε < dε � 1. Both the solute boundary layer and the Ekman layer
are confined to a shallow region above the interface while the thermal boundary layer
represents a major part of the fluid layer.

(6) The velocity of the induced flow in the fluid layer increases when the inclination
angle increases and decreases when the rotation speed in terms of Te increases. The
velocity of the induced flow in the mush also increases when the inclination angle
increases, but remains virtually unchanged on varying the speed of rotation, due to
the resistance to the flow in the mush being high and the Coriolis force negligible.

(7) For the precession-only case, the induced flow is steady, pointing steadily in the
same direction during the precession process. For the case including spin, the induced
flow changes direction with frequency equal to the spin angular velocity Ω, namely
the induced flow scans all directions within a period 2π/Ω.
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(b) Stability in the mush

(1) A larger inclination angle leads to a larger induced flow velocity and a greater
reduction of the buoyancy in the z-direction, both resulting in a more stable state of
the system. However, the primary stabilizing factor stems from the reduction of the
buoyancy in z-direction because the induced flow is weak in the mush.

(2) For the precession-only case, the most-unstable mode is the longitudinal mode,
which propagates in a direction perpendicular to the induced flow. This is because
the Coriolis force is negligible due to the high resistance to flow in the mush.

(3) For the case including spin, the instability modes in all directions are of equal
stability, because both the change in direction of the induced flow and the reduced
buoyancy makes the stabilizing effect apply equally to the mode in each direction.
The modes propagating in different directions differ from each other only by a phase
difference, represented by the so-called temporal-phase φk/Ω.

(4) The rotation speed, due either to spin or precession, does not influence the
stability of the mush since the Coriolis force is negligible. The inclination angle φn
turns out to be the only factor influencing the stability.

(c) Limits to the validity of the solution

The limits to the validity of the present result may stem from many factors such as
the validity of the induced flow solution derived in § 3, in which several assumptions
regarding the dimension of the system (or the cooling tank) have been made, the
neglect of the coupling between the two layers, the neglect of the sidewall effects,
and so on. We have discussed in § 3 the validity of the induced flow solution; the
corresponding assumptions are justified through a scale analysis of the equations, and
the following conclusions are reached.

(1) For the precession-only case, the induced flow of § 3 is valid only when the
inclination angle is small and/or the precession speed is large. This condition is rather
strict from the viewpoint of either laboratory or industry.

(2) For the case including spin, the induced flow of § 3 is valid for a wide-range of
physical dimensions, which satisfied most of the facilities used in either laboratory or
industry.

We therefore conclude, from the viewpoint of laboratory and industrial application,
that a scheme involving inclined spin can be a more efficient way to stabilize the
unidirectional solidification system than inclined precession: in addition to the wide
choice of dimensions, the system is of higher stability globally since the instability
modes are stabilized in all directions due to the inclined spin.

A final comment is in order on the role played by inclined rotation in the stability
of the present system. From the stability analysis in the mushy layer we found that the
stabilizing effect due to gravity reduction is more significant than that due to induced
flow (see figure 10b). We however note that, as the whole system including melt
and mushy regions is considered, the induced flow could play an influential role in
determining the stability in the melt. An interesting example can be seen in Feltham &
Worster (1999), who investigated the influence of a potential flow imposed parallel to
the melt/mush interface on the stability of a system unidirectionally solidifying from
above. They concluded that the imposed flow leads to a morphological instability
mode on the interface, above which a series of small convection cells form. In fact, we
have obtained similar results (not published) for a system unidirectionally solidifying
from below. In the present system, there is a strong shear flow forming above the
interface when the tank is under inclined rotation, but such an instability mode has
never been found either by the present theoretical analysis or in the experiment of
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Sample & Hellawell (1984). We conjecture that, since the induced velocity decreases as
the rotation speed increases, the rotation (either precession or spin) has indeed helped
inhibit the morphological instability. To understand more thoroughly the influence
of induced flow on the present system, further research on the effect of inclined
precession/spin on the whole system is required.
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